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SECTION 1
INTRODUCTION

Vibration issues and the associated fatigue accumulation often play a critical role
in the design of structural components. This observation is, in particular, true in the
context of future supersonic/hypersonic vehicles such as the planned National Aerospace
Space Plane (NASP) the skin of which will be subjected to especially harsh operating
conditions, e.g. surface temperatures possibly exceeding 3000°F, severe acoustic loading
from the engine exhaust, etc. The design of the surface panels appears in this light quite
challenging especially since it is not only required to consider each of these
environmental factors by itself but it is also necessary to account for their combined
effects. As an example of loading interaction, consider the response of panels to the
thermal and acoustic excitations mentioned above and note first that the increase of
surface temperature will produce compressive stresses in the panels since the extension
that they would naturally undergo is prevented by their supports. Further, the magnitude
of these stresses, in direct relation to the very large temperature changes, is likely to
produce the buckling of some panels.

To sustain such high surface temperatures, specially designed structural materials,
such as ceramic matrix composites, will have to be used. The refractory nature of these
materials will prevent the heat conduction through the panel and thus will lead to a severe
temperature gradient in that direction. The corresponding compressive stresses will exhibit
a similar sharp variation through the thickness which will result not only in a normal force
but also in a moment that increases the likelihood of buckling (see Ng, 1988, 1989, Lee,
1993, 1997, Vaicaitis, 1994, Moorthy et al. 1995)

Of primary importance in the fatigue damage accumulation process is the cycling
of the stresses and, thus, buckling represents a specially acute problem if the panel
oscillates from its buckled state to its normal configuration, or from one buckled state to
another. This latter mechanism, often referred to as snap-through or oil-canning, is
especially likely when the panel is subjected, in addition to the thermal loading, to a
random transverse excitation such as the acoustic loading from the engine exhaust. The
corresponding response of the panel consists of random fluctuations around the buckled
position but also often includes large excursions from this configuration, so large in fact
that the panel may snap-through to the other buckled state. Accordingly, the goal of the
present investigation is the formulation and preliminary assessment of a methodology for
the prediction of the fatigue damage accumulated in a panel due to both fluctuations
around the buckled states and the snap-throughs.




SECTION 2
PANEL STRUCTURAL DYNAMIC MODELING

The structural dynamic modeling of the panel can be decomposed into two major
parts: the composite plate modeling and the derivation of a simplified, one-mode, model
both of which are discussed below.

2.1 Composite Plate Modeling

Recent efforts in the structural dynamics of composite plates (see for example
Chattopadhyay and Gu, 1994) have emphasized the appropriateness of the higher order
plate theory as proposed by Reddy (1987). Specifically, the displacement field inside the
plate are selected in the form (see Fig. 2.1)

D, | — Y

/ orthotropic layer
7 /
N x

Figure 2.1 Composite plate modeling
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where u, v, and w are the displacements along the x, y, and z axes, respectively and A
denotes the plate thickness. Before proceeding further, it is important to assess the origin
of each term present in the above equations. '

First, ug(x, y,t) and vy(x, y, t) represent the time-varying in-plane displacements

of the mid-plane. These displacements are produced by both the thermal effects, which
include an overall increase of the panel temperature and temperature gradients along and
across the plate, and the mid-plane stretch associated with the large transverse
displacements. Note that both of these effects play fundamental roles in the present
buckling/postbuckling analysis and thus must absolutely be included in the formulation of
the plate equations. Clearly, the thermal effects induce compressive in-plane stresses that




are reflected by an apparent softening of the plate in the transverse direction and
consequently facilitate the plate buckling. Once buckling is initiated, the transverse
displacements rapidly increase leading to a stretching of the midplate which restores the
stiffness of the panel and allows the existence of a stable buckled equilibrium position.
Clearly then, one can formally write

ug =ug (T, wo) and vo =vo(T, wo) 4)
where the dependence of u and vy on wy is intrinsically nonlinear as it describes the

mid-plane stretching, a nonlinear effect of the transverse motions.
The next group of terms present in the in-plane displacements consists of

; 6w0(x, ¥, t) and 2 owg (x, ¥, t)

ox oy
bending components and are linear in the plate transverse coordinate. Completing the

which readily are recognized as the first order plate

2
formulation of u(x,y,t) and v(x, y,t) are the terms z[l—g(%) 0,(x, 3, 1),

2
and z[l——:—(%j :|<pv(x, y,t) which represent the higher order plate bending

corrections. Generally speaking, these components take the form g(z) (p(x, ¥, t) and are
designed to account for a nonlinear distribution of the displacements across the thickness.

2
The selection of the function H(z), H(z)=zli1—§-(—2) } and the physical

interpretation of the functions ¢, (x, y,t) and@,(x, y,r) will be discussed in the next
section in connection with the strains. Clearly, these terms are primarily produced by the
transverse motions and thus

Oy =0y (WO) and Py Z(Pv(WO) . (%)
It will be shown, under the assumption of a symmetric composite layering, that ¢, and

@, exhibit a linear functional dependence with respect to wy.

Considering finally the transverse displacement, it is seen that the variations of
this quantity across the thickness have been neglected in accordance with (reasonably)
thin plate assumptions. Then, wy(x, y, t) denotes the time-dependent transverse

displacement of the mid-plane, produced by external loading and influenced by the in-
plane (membrane) stresses as described earlier.

The next step in the structural dynamic modeling of the panel is the introduction
of the strains-displacements relationships. The presence of an in-plane displacement field

of order (w )O, i.e. the one corresponding to the thermal effects only, requires the

consideration, even for the small amplitude transverse vibration problem, of nonlinear
terms in the definition of the strains. In the present analysis, it will be assumed that the in-
plane displacements are substantially smaller than their transverse counterparts so that the
second order terms in  and v are neglected but those in w are retained. This approach
yields the von Karman strains
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Introducing the displacement field given by Eq. (1)-(3) in Eq. (6) yields the expressions
of the strains in terms of the five basic unknowns, i.e. ug(x, y,1), vg (x, y,1), wo(x, y, 1),

0, (x, y,1), and @, (x, y,1). In this respect, note at the contrary of first order bending
theory, that the shears strains y,, and y,, do not vanish inside the plate. In fact, one has

Yo = 1—4(5J2 ¢, (x, 1) and y -1 1—4(5)2 oy, 3.1) (D
¥ =5 h u\ts s ¥z 75 P AL S

from which it is then seen that the function g(z) was selected so that the shear strains vy,
and v,, vanish at both the top and the bottom of the plate (z =% —}21) as required by the no

shear stress boundary conditions. Further, Eq. (7) implies that ¢, (x, y,t) and @, (x, b2 t)
are in fact directly related to the mid-plane (z = 0) shears v,, and y,,. The higher order

plate bending displacement field given by Eq. (1)-(3) thus includes shear effects.

Turning now to the definition of the stresses, it will be assumed that the behavior
of the panel remains linearly elastic during its entire fatigue life. Modeling further each
layer of the composite as an orthotropic material leads to the stress-strain relationships

o (e —ap T)
gy gy-—ay-T
(o2 &
o= “t=0{ ° =0£-QaT ®)
Ty'z Ex'z
Tyvz gy-z
P L ey

where (x', ', z) denotes the frame of reference for each layer with x' aligned with the
fibers. Further, o, and o represent the coefficients of thermal expansion along and

across fibers and T =T(x,y,z) is the local temperature. Finally, Exy =2¥xy's
&y =27y, and similarly £, =2y, , and Q denotes the symmetric elastic constant

matrix of the orthotropic layer, i.e.,




O O Qi3 O
Qi On O 0
0= Qi3 O3 O35 0

0 0 0 OQuag 0
0 0 0 0 Qs O
0 0 0 0 0 Ol

Since the strains are defined in the global axes (x, y, z), see Eq. (6), it is necessary to
rewrite Eq. (8) in that frame of reference. Specifically, it is found that

o= R(0r)a' = R(0x)Q R(-x) e~ R(0x) Q' T (10)
where R(9;) denotes the 6x6 matrix describing the rotation from (', 5, z) to (x, y, z) by
the ply angle ¢, . That is,

o O O
S O © ©

)

m n 0 -2mn 0 O
n® m? 0 2mn 0 O
0 0 1 0 0 O
R(b,)= (11)
( k) mn -mn 0 mz—n2 0 O
0 0 0 0 m —-n
0 0 0 0 n o m|

where m =cos¢;, and n = sin¢y . For simplicity of notation, Eq. (10) will be rewritten as
o= 0lg-aT] (12)
where
e -1 '
0=R(3) 0 R(- ¢) and  aT=[R-¢)]" «'T=R(g)aT (13)
Equations (1)-(3), (6), and (8)-(13) provide a complete description of the
displacement, strain, and stress fields in terms of the functions ug(x, v, 1), volx, y,1),
wo (x, ¥, t), 0y (x, ¥ t), and o, (x, ¥, t). Then, to obtain the set of governing equations

for these unknowns, Hamilton’s principle can be used, i.e.
5]
§[(T—V +Wey)dr =0 (14)
h
where T, V, and W,,, denote respectively the kinetic and potential energies and the work
done by the external (acoustic) loading. These quantities are readily obtained from the
displacement, strain, and stress fields as
ab hl2
JJ. I (u +92 +w )dzdydx (15)
00 -h/2
abin
H{Z f"“ o le-aT]dz |dydx (16)
00

k=

—




where n,, represents the number of plies and zj, z;,; are the transverse coordinates of

the bottom and top of the K" ply. Finally, the external work is defined by its virtual

counterpart
ab

Wyt = J I plx, y,t)dwdy dx (17)
00

where p(x, Vs t) denotes the acoustic pressure exerted on the surface of the panel.
The application of Hamilton’s principle, Eq. (14), to the above quantities yields a
set of five nonlinear coupled partial differential equations for the quantities ug (x, Y, t),
vo(x, Y, t), Wy (x, ¥, t), ©y (x, ¥, t), and o, (x, ¥, t) the solution of which represents a
serious challenge even in the case of a deterministic loading p(x, ¥, t). In the presence of
random acoustic pressure fluctuations, the determination of the statistical description, e.g.

probability density functions, of the five variables is beyond current capabilities and a
simplification of the model must be achieved.

2.2 Derivation of Simplified Models

Several methods are available for the derivation of simplified models for
nonlinear structural dynamic problems. One standard approach is to proceed as for linear
systems and express the unknown displacements fields in a limited modal-type
expansion. In the present context, this strategy would lead to the approximation

z=34;()wlxy) (18)
i=1
where
_Z_T :‘[uO(x’ Vs t)’ Vo(x, Ys t)’ wo (x: Ys t)’ (Pu(x’ s t)s (pv(x, s t)] (19)

and \y(x, y) denotes a five-component vector of specified functions of the spatial

coordinates x and y. Finally, the time-dependence of the displacement fields is captured
by the unknown variables q,-(t). When the governing equations for Z are linear or

weakly nonlinear, the number of modes m can be selected to be substantially smaller than
the dimension of the vector Z and a sometime dramatic simplification of the problem is
accomplished. A single-mode (m=1) approximation is especially attractive as it reduces
the problem to a single, nonlinear, ordinary differential equation. Unfortunately, in this
low order approximation the components of the vector Z are linearly dependent on each
other which is not acceptable in the present context since the in-plane displacements
ug(x, y,¢) and vy (x, y, 1) involve the transverse deflections wq(x, y,¢) only through the
mid-plane stretching, a purely nonlinear effect.

The derivation of a single-mode approximation of the present problem must then
be accomplished differently. Specifically, it was already argued in connection with the
selection of the von Karman strains that the in-plane displacements are expected to be
substantially smaller than their transverse counterparts. Thus, the contribution to the

panel kinetic energy of the terms 42 and v2 should be small and could, in first

approximation, be neglected. Accordingly, the displacement fields u (x, b2 t), Vo (x, ¥, t),




0y (x, ¥, t), and o, (x, Y, t) appear explicitly only in the potential energy and must then
be selected so that 8% =0. Note that the potential energy does not involve any time
derivatives so that its minimization with respect to u (x, ¥, t), vo(x, ¥, t), o (x, b2 t),
and o, (x, ¥, t) yields a set of four nonlinear, coupled partial differential equations with

respect to space for these four displacement fields. These equations can be recognized as
integral versions of the in-plane equilibrium condition for the plate and can be used to

express (at least approximately) uo(x, ¥, t), vo(x, ¥, t), (pu(x, ¥, t), and (pv(x, Vs t) in
terms of the transverse deflection wy(x, y, t). Practically speaking, this procedure
represents a quasi-static condensation of the plate equations and leads to the single
unknown field w (x, Vs t) which, following previous arguments (see Eq. (16)-(17)), can
be sought in the form

wo(x, v,1)=q(t) Wy (x, ») (20)
where W (x, y) is a specified function. For maximum accuracy, Wy (x, y) should closely

resemble the spatial distribution of the plate transverse deflections and thus can be
selected as the panel buckling mode shape. Mathematically, this function can be
expressed as

Wo(x,y)=22amn sin(mzx)sin(n:y) 21)
m n
where a and b are the dimensions of the plate in the x and y directions, respectively.

At this point of the investigation, it is assumed that the panel is simply supported
and thus the function wy (x, y) should satisfy zero deflection boundary conditions on its
four sides, i.e. on x =0, x = a,y = 0, and y = b. These conditions are automatically
fulfilled by the choice of the sine functions independently of the number of terms in the
summation. Thus, for simplicity, it will be assumed that

o (x, y)=sin(’";”) sin(n 7Y ) 22)

b

The above discussion demonstrates that the determination of a single-mode
approximation of the panel dynamic behavior can be separated in the following two steps:

(1) Determination of the functional dependence of uo(x, ¥ t), vO(x, Vs t), 0y (x, ¥ t),
and o, (x, y,t) on w (x, ,1)
(2) Determination of the governing equation for the transverse displacement, i.e. (7).

Before addressing each of these two aspects of the problem, the following notations are
first introduced:

Forces: :
h/2 hl2 hi2
N, = '[07, dz M, = _[za}, dz P, = IH(z)ay dz y=x,y (23)
-h/2 ~h/2 ~hl2
hi2 h/2 hi/2
Ny = [ty d My= [zt d  Py= [H@)1y d (24)
-h/2 ~h/2 ~h/2 '




-]\—’=[Nx Ny ny]T —M-z[MxMnyy]T £=[Px Py ny]T (25)

hl2 hl2

Re= | ﬁ?rn i Ryp= | d—fgﬂrﬂ iz R=[Rg R[] (6
—h/2 -h/2
Thermal Loading:
hl2 h/2 hi?2
N'= [QarTd M'= [:0aTd P'= [H@O&ET d 27
-h/2 ~h/2 ~h/2

where O is the 3x3 matrix extracted from @ by removing the 3rd, 4th, and 5th
rows and columns and & is the 3-component vector corresponding similarly to « .

Strains/Curvatures.:
T
2 2
£0= 6u0+l aW()) 8V0+l 6w0 6u0+6v0+ 6w0j aWO 28)
- ox 2\ o&x oy 2\ oy oy ox Ox oy
T
2 2 2
K= _6 Mzio _a 1';0 _25 wo (29)
ox oy Oxdy
T
T ! op, Op, O0p, 0p,
25 [@u (ov] ¢ I: o Py Py o (30)

Constitutive Matrices:

hl/2 5 dH(Z) 2 ) i
(4,B,C,R,X,W,Z)= [ |Lz:z ( — ) JzH(z), H*(2), H(2) |Qdz . (31)
~h/2

Further, 4, B, C,X,W,and 7 are the 3x3 matrices extracted from 4, B, C, X, W, and
Z, respectively, by removing the 3rd, 4th, and 5th rows and columns and

~ |R R
R =[ 44 45]‘ (32)
Rys  Rss
Relations between force and strain vectors can be derived by multiplying the
constitutive equation, Eq. (12), by 1, z, H(z), and %@ and integrating through the
4
panel thickness. Specifically, it is found that
N i B Z o] |&° N!
M B C X 0 f
My Ii - 4 K| M (33)
P Z X W 0 ¢’ P!
R 0 0 0 R| |¢ |0 |




2.2.1 Determination of the functional dependence of uo(x, ¥, t), vo(x, Vs t),
0y (x, ¥, t), and ¢, (x, ¥, t) on wy (x, y, t)

Proceeding under the assumption that the kinetic energy associated with the

displacements/shears ug(x, y, ), vo(x, ¥, 1), 0, (x, v, ¢t t),and o, (x, y, t) can be neglected

in comparison with its out-of-plane deflection component, the governing equations for
these functions derived from Hamilton’s principle correspond in fact to the minimization
of the potential energy alone. Then, the condition 3 ¥ =0 yields, after some integrations

by parts, the 4 partial differential equations

ON, ON
Sug : * 20 (34)
ox oy
oN,, ON
Svp : ax"y + ?y =0 (35)
opP, OP
50, : a; a;y -R,, =0 (36)
oP., ©oP
. v, Py -
5¢V‘ o +—a—y——Ryz =0, (37)

In order to obtain closed form expressions for the displacements/shears uo(x, ¥, t),

vo(x, 3, 1)s @,(x, y, t), and @, (x, y,1), it is necessary to specify the temperature
distribution in the plate. Following Lee (1993), it will be assumed here that

T=Ty+06, Ty sm—sm—+5 T sm?‘—smzﬂy——l- z | (38)
a b a b 4]h

where T, denotes the average plate temperature and &, and J represent measures of

the temperature gradient along and across the plate, respectively. Then, introduce the
vectors

h/2~ B2 1 hl2
v= [Qad y= [z0@d — [*Qad
- " h
-h/2 -h/2 -h/2
hi2 ~ i hl2 -
x= IH(z)Qde p=s sz(z)Qde. - (39)
-h/2 -h/2
Under these assumptions, it is found that
N =|Ty +6, T sin” sin2 g+—1-5g Ty sinz—i?c—s‘inz—ﬂy-—l % (40)
a b h a b 4]|—




M =[To +6, Ty sin™> sin—?—:lvl+5g To [Sinz ESinzﬁy"‘lJQ (41)
a - a

b 4
and
P =Ty +6, Ty sin”> sin’% X+6g T sinZE-sinzZz—l H (42)
- a b= a b 41—

Next, it will be assumed, as is often the case, that the panel is composed of
symmetrically placed layers. Then, it is readily seen that the matrices B, Z, B, Z,and
vectors y and y are identically zero and the in-plane displacements uo(x, Y, t),
vo(x, y, t) and out-of-plane shears (pu(x, ¥, t), and (pv(x, Vs t) are uncoupled of each

other, see Eq. (33)-(37). The determination of these two sets of functions can thus be
accomplished separately as follows.

(a) Determination of the in-plane displacements uy(x, y, t), vo(x, y,1)
The determination of the in-plane displacements (x, Vs t), Vo (x, ¥, t) is
accomplished from Eq. (34)-(35) and the reduced constitutive relation Eq. (33), i.e.
N=4e -N', (43)
in either of two ways. A first approach is to introduce this expression for the force vector
N in Eq. (34) and (35) to obtain two coupled partial differential equations for g (x, ¥, 1),
Vo (x, ¥, t) (no time derivatives). Another strategy is to introduce a scalar stress function
(x, y, ) such that (see Lee et al., 1998 for details)
2~ 2 A 2.
Nx=a—2K Ny=a—2£ ny=-?—"i 44)
oy 0x Oxdy
so that the equilibrium equations (34) and (35) are automatically satisfied. Then, the
function y?(x, Vs t) is selected to satisfy the compatibility condition

2
62510 +528§ _6252 B 82w 3 _a_z_»g 62_w 45)
where 510 , gg , and ag are the components of the vector _6_‘0, see Eq. (28), which are

related to y?(x, ¥, t) through Eq. (43) and (44). This process results in the 4th order partial

differential equation for y?(x, y, t) presented by Lee et al. (1998).

Irrespectively of the approach selected, it is necessary to first establish the
boundary conditions to be satisfied. In view of the simply supported nature of the plate, it
could be expected that the in-plane motions of the mid-plane be restricted at the support,
ie.

u (0, y,t)=u (a, y,t)=u (x, O,t)=u (x,b,t)=v(0, y,t)=v(a, y,t)=v(x, 0, t):v(x,b,t):O
(46)
Of these 8 boundary conditions, it is particularly important that
u(O,y,t)=u(a,y,t):v(x,0,1)=v(x,b,t)=0 (47)
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be satisfied as they correspond to the constraint on the expansion of the plate and thus
play a fundamental role in the buckling of the plate. The remaining four geometric
boundary conditions
u(x, O,t)=u(x,b,t)=v(0,y,t)=v(a,y,t)= 0 48)

represent a lack of sliding along the supports. If necessary for simplicity, they could be
replaced by their corresponding natural boundary conditions

Txy (x, 0, t) =Ty (x, b, t) =Ty (O, ¥, t) =Ty (a, Vs t)= 0 49)
on the midplane, z = 0.

The determination of closed form solutions of nonhomogenous partial differential
equations, such as those for ug(x, y, ) and vo(x, ,t) or §¥(x, y,1), is conditional on the
availability of both particular and homogenous solutions. Considering first the former, it
is seen that the nonhomogenous character of these equations originates with both the
transverse displacement wy (x, y, t) and the in-plane temperature variation both of which
involve trigonometric functions of x/a and y/b. On this basis, a particular solution can be
sought as a limited Fourier series. On the other hand, the determination of a homogenous
solution which, after superposition with its particular counterpart, yields the correct
boundary conditions is in general a daunting task unless the method of separation of
variables can be used. In this light, it should be noted that '

(i) the Fourier series particular solution for u (x, b2 t) and vy (x, ¥ t) does not satisfy

any of the boundary conditions given by Eq. (46) and/or (49) when A4j¢ and Ay

do not vanish.
(i) the partial differential equations to be solved do not admit a separation of

variables homogenous solution when 44 and A;¢ do not vanish.
It is then concluded that a closed form solution for the in-plane displacements uq (x, V, t)
and vp(x, y,t) will be quite difficult to obtain when the two coefficients 4} and g
are non-zero. For this reason, the present analysis will be limited to either symmetric
angle-ply laminates or cross-ply laminates in both of which the constants A4j¢ and Apg
always vanish. Under this restriction, a bonafide solution, satisfying Eq. (47) and (49),
can be found as

. 2 . 2 -
ug(x, y,1)=ug sin2> + ug sin2~ cos£72 (50)
a a b
. 2 2 .
vo(x, ¥, t)=vor sm—Z—Z + v cos= 2= smz—zZ (51)
a

2

2 4z 27Z'y
Ny(x, ,1)=Ce0 q° =1 Tp "—2(/1020 a® + 2021 8, To)COS—
’ ’ (52

472
—-——75-—/1221 5v To COS 37-1'_{ COS—2—7-Z-—'2)—
2 a b
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2

4z ) 2rx
N, (x, y,1)=Csg g% -vy T ”-—2—(/1200 q° + 2201 Oy To)COS——
, ’ (53)
- 47; /1221 5v TO COS —2—72 COSEQ
a a
472 . 2mx . 21y
N , Y, t)=——— A9 6, Ty sin —— sin —— 54
xy(xy) 221 % 0 St — In— (54)
where
2 2
VA T
Cs0 =~ [Azz a® + A bz] Ceo =—2—2-[A12 a® + Ay bz] (55)
8a“b 8a°b
2
Ao = a? Ay An -4 PIS— a? (vo 41 -vi 41p) (56)
32b2 Ap 1672 Ay
2
Aoz = b2 Ay Axn -4, Aot = - b2 (v) Ay — vy 4pp) 57)
3242 A 1672 Ay
Ay Alz) (All Al2j
Vil—5 5 |tV2 |5 T 5 2
Ayl = ! (b2 a? a>_ b’ A:M?_Z_Aﬁ (58)
2L 672 45 +(A—2A12)+A22 Age
a4 a’ b? b4

2 2 2
1 a A22 Vl -da AiZ V) -167 /1201 Al2 5. T
v 40

2r| 1 /1200 AIZ
—[_ i

- 2 2
a (16 a4y dyy -4, ) 374 Ajy Axp — 4p
(39)
T 2 a 1 1 472 472
upy == q? + o= ————— |~ (A vi = Aip v2) = Aoa1 | —5 A2 ——5 iz | |6y To
16a 2r Ayp Ay — A 4 b a
(60)
__22m| 1 Ap20 412 1 624y vy — b2 Ay vy =16 7% Agy 41y ST
vor=-9" ——| - |- z v To
b |16 Ay Ay —4), ) 87D Ay Ay -4,
(61)
T o b 1 1 472 47
v =T 4"+ |2 (i va =i vi) = Ao | - A ——5 412 |16y T
165 27 Ay Ay — Al 4 a b
(62)
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(b) Determination of the out-of-plane shears ¢, (x, v, t) and @, (x, ;1)
A set of two partial differential equations for the out-of-plane shears ¢, (x, y,t)
and o, (x, v, t) can be derived from the simplified constitutive equation, Eq. (33), i.e.

M C X of |« M'
Pl =|X W o |g] - |2 (63)
R 0 0 R| |¢ 0

and Eq. (36) and (37). An analysis of their nonhomogenous terms motivates the search
for a particular solution of the form

¢, (x, y,t)=Us sin 7 cosZX 4 U, cos I sin 22 (64)
a b a

o, (%, y, t) =V sin 7% cos Ebz +V, cos X sin 22 (65)

a a
Accordingly, the vectors P, Q’ ,and R can be expressed as

P(x,y.t)=P, sinﬂsin%+£cc cos = cos 22 (66)
a a

¢' (x, ¥, t)=¢’ss sinﬁsinly—+¢’cc cosE cosﬂ 67)

- - a b - a b

@(x,y,t)=£sc sinﬂcos%z+§cs cosﬂsinzb—x. (68)
a a

) . r 7l .
Introducing the partitioned vector R p= [B R sc] , it can be seen that Eq. (36) and (37)

cs
are equivalent to

Ags £ss +Ag £cc —Ep =0 (69)
where
r/la O 0 0 0 —-7lb
A 0 0 #/a d A 0 ~7lb 0 (70)
= an = .
5 0 0 =#/b “ |-nla 0 0
0 =#n/b 0 0 0 ~-rla
Further, the constitutive relation, Eq. (63), is equivalent to the equations
Pu=qX K +Wss-6,Tou (71)
£cc=q)?£cc+W?CC (72)
where '
T T
2 2 2
n° 2r
ESS '—"l:'a—z 'b—2 0} and -’—C-SS ={O 0 - ab ] . (73)

Moreover, from the definition of gl , Eq. (30), it is found that
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§ss=-Ag R, pec=-A R, (74)
Then, combining Eq. (69), (71), (72), and (74) yields the system of algebraic equations

IASS WAL +A,. WAL, + R, R,=q [Ass X+ )Nfgccl—é'g To Ags 1t (75)

with
~ (R 0
Ry = ~1. 76
2 [0 R} (76)

Once the coefficients U, Ug, Vi, and Vi, stacked in the vector R, have been
determined from Eq. (75), the particular solution for the out-of-plane shears o, (x, t),
and @, (x, V, t) is available from Eq. (64) and (65). Further, the corresponding moments
can be evaluated from Eq. (63) as

. X ., 7Y X Ty
_M_(x, y,t)-:Mss sm—c—z—sm——E—+Mcc cos——c-l— cos—b— a7
where
—Mss =q55ss +)?Q ss -5g TO Q=q5£ss "/?A:.Cs -Ep _5g TO Q (78)

~ ~ ! ~ ~
Mccz'qc.’gcc'}'X?CC:qCE_cc—XAic.B.p . (79)
The above derivations focused on the particular solution for the out-of-plane
shears @, (x, y, t), and (pv(x, y,t). To complete the solution, it remains to assess the
boundary conditions and to determine a corresponding homogenous solution for these
functions. Considering first the boundary conditions, it is readily seen that they do not
come from the in-plane considerations since the contributions of @, (x,y,t) and

0y (x, ¥, t) to the displacements and strains vanish on the mid-plane (z = 0) where the in-

plane constraints are imposed. Rather, the necessary boundary conditions must come
from:

(i) the variational formulation, i.e. 6V =0

(ii) transverse motion requirements.
In addition to Eq. (36) and (37), the minimization of the potential energy yielded two
boundary terms which should also vanish. This situation occurs when:

either @, is fixedor P, =0 and either ¢, isfixedor P, =0 onx=0anda (80)

and
either ,, is fixed or Py, =0 and either ¢, is fixedor P, =0 ony=0andb. (81)

Further, the simply supported nature of the plate implies that the moments at the supports
should vanish, that is

M, =0 onx=0anda (82)
and

M, =0 ony=0andb. (83)
It is clearly seen from Eq. (64)-(66) and (77) that none of the boundary conditions (80)-
(83) is pointwise satisfied by the particular solution derived above and thus it should be
necessary to determine an appropriate homogenous solution. The discussion conducted in
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connection with the homogenous part of the in-plane problem can be repeated here to
demonstrate that such a solution is very unlikely to admit a closed form expression. A
first strategy to resolve this issue is to restrict the current analysis, as in the in-plane
problem, to plate configurations in which boundary conditions are satisfied exactly by the

particular solution presented above. This situation occurs if the terms X and Xpg
vanish, as is the case in cross-ply laminates. Indeed, it is then found that Uy, =V, =0 so
that
P, =0 ¢, =0 M,=0 onx=0anda (84)
Py, =0 9, =0 M, =0 ony=0andb. (85)
In considering the boundary conditions, it should be noted that the imposition of ¢, =0
and/or ¢, =0 at the plate supports does not imply that the in-plane displacements will

vanish there since the terms Z—Exp— and z—2 are in general non-zero. Thus, it is

unclear that constraining the values of ¢, and ¢, at the edges of the plate would be
representative of a typical simple support configuration. Rather, it would appears that the
most physical boundary conditions for the present problem would be

P, =0 Py =0 M, =0 onx=0anda (86)

P, =0 Py =0 M, =0 ony=0andb. (87)

Further, note that the above constraints are all natural boundary conditions, i.e. they are
not related to the geometry of the problem but rather arise through the variational
formulation. Thus, the satisfaction of these conditions is desired to obtain the best
approximation to the exact solution but it is not absolutely required as were the in-plane
constraints, Eq. (47). Finally, note that if Eq. (86) and (87) are not satisfied pointwise,
they are matched in average along the sidesx =0, a and y = 0, b. On the basis of these

comments, it is suggested, as an alternative approach to requiring Xjs and Xj¢ to

vanish, to require that the natural boundary conditions be satisfied only on average and to
let the variational formulation find the best approximation possible to the transverse
response problem.

2.2.2 Determination of the governing equation for the transverse displacement, g(f)

The mathematical developments presented in the previous section have
demonstrated that the search for a transverse response of the plate as

wo (x, »,1)= (1) o (x, ) (88)
must be accompanied by corresponding approximations of the functions uo(x, Vs t),

vo(x, ¥, 1), @, (x, ¥, t),and o,(x, y, t) of the form

ug(x, »,1)=q% uo(x, y)+8, Ty dig(x, y)+ To #o (x, ») (89)
vo(x, 7, 1)= g% o (x, )+ 8, To %o (x, )+ To % (x, ) (90)
0y (% 3, 1) =9, (x, )+ 85 Tp 9 (x, ) (91a)
0y (6, 2,0)= 4G, (x, )+ 84 Tg &y (x, ) (91b)
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where the functions # (x, y), s (I)v(x, y) are known from the solution of the in-plane

problem. Introducing the above expressions in Hamilton’s principle, Eq. (14), results,
after some algebraic manipulations, in the differential equation

— \2 — \2 — —
N [Fo) on, [T san, (2020 ) gy 6
ox % ox J\
ab 2— 2— 2
{22 225 ] s
00 x oy Y
where M and p(?) are the modal mass and force, respectively, defined as '

ab h/2 _\2 _\2 2( 2 _2\] k2
ow ow ab h“|\n° =«
2 0 2 0 2
M—II J p{z ( ) +z ( J +w0]dzdydx— 4[1+12(a2+b2ﬂ .[pdz

ab
Mg +qif]
00

00-h/2 —h/2
93)
and
ab
pt)= [ [ plx. y.0) o (x, y)dy dx . (94)
00
Note that the expression for the mass given in Eq. (93) includes the effect of the rotary
inertia associated with the pure bending rotations %ﬁo— and %”yﬁ
x

Introducing the expressions for the forces N and moments M given by Eq. (52)-
(54) and (77) in Eq. (92) yields the governing equation for the transverse displacements
in the form

MG+ (kg+k 8, To +ky To)g+y > = po + plt) (95)
where
ab| z? w2 272
ko= [”5_" M 550 + I M ys50 = —= Mixyeco (96)
a
ab| 27* vl7r2 vy 12
k1=—4—{ 2,2 (Aoz21 + 2201) - il jbz 97
a
b 2 2
k2=_a_ w7z +V2ﬂ' (98)
4| 42 b2 ,
ab 272'4 ﬂ'z C60 7T2 C50
7=-4—{ 2,2 (A0 + Aa00)+ —— + 72 (99)
a a
ab | n? n? 22
=—|—M +—M -——M 6, Ty . 100
po 4 I:az xssl b2 yssl ™7 xyccl} g 10 (100)
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In the above expressions (Eq. (96) and (100)), the symbols My and Mo are the

first two components of the vector M ;o which corresponds to the g related terms of
M . ;see Eq. (78). The moments M and My are similarly defined from M

—=55°
which is associated with the terms in 5, Ty of M ;. Finally, the quantities M y,cco and

M yycc1 are obtained in a similar fashion from M .., Eq. (79).

2.2.3 Validation and Some Numerical Results

The mathematical developments presented in the two previous sections were
validated by comparison with previously published results. In this respect, it should first
be noted that the present higher order shear deformation plate theory formulation
(HSDPT) naturally reduces to both the first order shear deformation plate theory
(FSDPT) and the classical laminate plate theory (CPT) under the following assumptions:

HSDPT — FSDPT: H(z) =z and R=4 X=W=C u=¢0 (101)
HSDPT — CPT: H(z) =0 and R=X=W=0 u=0. (102)
The present formulation was first validated by comparing_ the expressions for the
parameters kg, ky, kp, y, and ;0 obtained under the assumptions of Eq. (102) for a

single layer isotropic plate with published CPT results (see Lee, 1993). After some
algebraic manipulations, the exact values were recovered as

Al (a2 +b2)2 E
48 ab’ 1-v2

2 (2, 12
k1=—aE—§—2—M (104)

(103)

ko

ab
PV
y:% a3hb3 1—Ev2 [1-v2)(a* +5%)-2(a* +5% +2va? 82 (106)
| o= 7 h? (2 +?) E (107

. 48 ab I-v
where a, E and vare the coefficient of thermal expansion, Young’s modulus and
Poisson’s ratio, respectively.
Next, the composite plate investigated by Kavallieratos (1992) was considered
and the present CPT results were found to yield the values of the natural frequency

(Jko/M /27 = 642695 Hz) and buckling temperature (~k5 /kg= 9.352°F) stated by the
author.
The validation of the FSDPT and HSDPT formulations was accomplished by

comparing the results obtained by the present approach with those published by Reddy
and Phan (1985) for three of their cases. Case I and II relate to single layers of a material
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that is isotropic (for case I) and orthotropic (for case II) while in case III the plate is a 4
layer [0°/90°/90°/0°] composite. In all three cases, @ = b = 10h. Shown in Table 1 is a
comparison of the natural frequencies obtained by Reddy and Phan (1985) and by the
present formulation. Note, in the work of Reddy and Phan, that the inertia associated with
the in-plane displacements uo(x, ¥, t), vo(x, y, t) and shears @, (x, V, t), (pv(x, y,t) 1s
included. Thus, a perfect equality of results should not be expected but the close matching
shown in Table 2.1 indicates that these inertia terms affect only slightly the transverse
deflections as assumed here.

Table 2.1. Comparison of dimensionless frequencies obtained by Reddy and Phan (1985)
and by the present formulation. Square plate with a/k = 10.

CPT FSDPT HSDPT

Reddy & Phan
(Case I, Table 1) 0.0955 0.0930 0.0931
Present 0.0955 0.0934 0.0930

Reddy & Phan
(Case II, Table 2) 0.0493 0.0474 0.0474
Present 0.0492 0.0476 0.0473

Reddy & Phan
(Case II1, Table 3) 18.652 15.083 15.270
Present 18.738 15.535 15.054

Having validated the accuracy of the present formulation, it was desired to
investigate the effects of plate thickness and shear deformations on the transverse
deflections. It was first observed that only the coefficients ky and p are affected by the

choice of plate theory (CPT, FSDPT, or HSDPT) as the remaining ones depend solely on
the in-plane stress field. Table 2.2 and 2.3 present the values of ko and p( for different

variations of the plate considered by Kavallieratos (1992) composed of eight layers
oriented at [0%/45°-45°/90°]; . The geometric and material properties were selected as a =

20 in., b = 82 in, p=1.30210"* Ib-sec’/in*, E;; =18.6 10° psi, E5y =2.0 10° psi,
Gy, =0.8 10° psi, and vi, =0.31. The values of the shear moduli Gy3 and Gp3, which

are required by both the FSDPT and HSDPT, were not specified by Kavallieratos and
thus they were selected equal to Gy,. The plate thickness which was selected by this
author as 4 = 0.0416 in. (or b/h = 197.12) was varied here to yield different ratios b/h,
specifically b/h = 197.12, 50, 20, and 10. The different values of ky and pg are

summarized in Table 2.2 and 2.3, respectively.
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Table 2.2. Values of the stiffness & according to different theories
and for different thicknesses

b/h CPT FSDPT HSDPT
197.12 36.212 36.206 36.204
50 2218.76 2212.77 2210.77
20 34668.10 34091.88 33903.71
10 27734477 | 259844.26 | 254498.47

Table 2.3. Values of the force pq according to different theories
and for different thicknesses

blh CPT FSDPT HSDPT
197.12 0.009336 0.009334 0.009334
50 0.1451 0.1447 0.1446
20 0.9069 0.8914 0.8869
10 3.6275 3.3921 3.3287

It is seen from the above tables that the three theories yield similar values of & and p 0

as long as b/h remains larger than 50 or so. As this ratio decreases, the difference between
the classical plate theory and the shear deformation formulations steadily increases. At
b/h = 10, the classical plate theory is approximately 10% away from HSDPT while the
two shear deformation formulations differ from each other by only 2%.

2.3 Panel Displacement-Stress Relations

The structural dynamic modeling of composite panels accomplished above has
focused on the determination of the differential equation for the dynamic response, i.e.
the variable g(f). In addition to this equation, the estimation of the fatigue life of these
panels requires also the stress-displacement relations which are obtained as follows. First,

the stresses at a certain depth z, o(z), are related to the corresponding strains &(2)
through Eq. (8). Next, the strains g(z) must be expressed in terms of the single modal
displacement ¢(¢). This second step is accomplished by relying on the strains, curvatures

and shear related terms go .k, ¢,and Q’ defined in Eq. (28)-(30). Specifically, it can be
shown that
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1
J

S e 1k 1

&(z)=G(2) (108)
where the 6x11 matrix G(z) is
[ 1 0 0 z 0 0 0 0 |H(E) o0
0 1 0 0 z 0 0 0 0 H(z)
0 0 0 0 0 0 0 0 0 0
Glz)=
0 0 0 0 0 0 [H'(z) © 0 0
0 0 0 0 0 0 0 H())| o 0
| 0 0 1 0 0 z 0 0 0 0

(109)

1
0, K, ¢,and ¢ in terms of the

It remains then to express the four vectors &
modal displacement ¢(f). To this end, note from previous developments, i.e. Eq. (33), that

g0=4" [N+M’] (110)

in the case of a symmetric composite. This relation provides a direct connection between
£0 and ¢(f) since the vector N ! and the matrix A4 are independent of this quantity, see
Eq. (27) and (31), and the components N,, N, and N,, of N are specified by Eq.

(52)-(54). Accordingly, the vector go

a quadratic component in g, i.e.

can be expressed as the sum of a constant term and

g’ =g0+e34”. (111)

Turning next to the curvatures, x, the assumed transverse displacement
-
wy (x, y) =g sin — sin % (112)
a

implies that

2
% sin = sin 7
a a
= X ny
—z-sin—— sin— |. (113)
b a

o
I
<

ab a

Finally, the shear related terms ¢ and Q’ are readily evaluated from Eq. (64), (65), and
(67) where the vector R p is obtained by solving the system of equations (75). These

relations demonstrate that both ¢ and Q, depend linearly on g, i.e.
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p=0,+8,4 and b =9, +9, q (114), (115)

Then, combining Eq. (8), (108), (111), and (113)-(115), it is found that the stress
vector at any point can be expressed as

c=0y+0,q+05 4% (116)

2.4 Non-Dimensionalization of the Structural Dynamics Equations

In order to compare the effects of the acoustic excitation on different composite
and isotropic panels, it is convenient to first rewrite the governing equation for the
transverse displacement ¢ and the stress-displacement relations in dimensionless forms.
For the former, consider the differential equation, Eq. (95), and introduce the
dimensionless displacement ¢ and time 7 defined as

~ 4
=1 117
9= (117)
and
r=6r1 (118)

where € is an appropriate time constant. Introducing these new variables in Eq. (95)
leads to

. 02 n 492'Yh2 A3 62p0 02
+—ko(l-s)g+—— G =——+——plO 119
q M.o( )i+ ——— & = 2Mhp(t) (119)
where
ki o, +k
s=——1—vi——2TO (120)
ko

is the ratio of the panel temperature to the buckling temperature. Equation (119) is of the
same form (without the damping term) as the one considered by Lee (1993) in connection
with isotropic panels provided that

2
6° 2 b?
—M—ko—a)o —[1+—;J . (121)
Accordingly, the time parameter 6 will be selected as
2
6=1+ —b—2— M . (122)
a* )\ ko
Then, the nonlinear term is 7 c}3 with
. 46%yh?
= 123
4 Y, (123)
and the constant effect of the temperature gradients is
5o =220 (124)
0 oMh’

Finally, the normalized acoustic excitation ;(r) can be written as
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plor) (125)

plr)=

2M h
so that its power spectral density is

4 ppl g 3

§—-(w)=—2 o). 9 s [2]. (126)
PP a2 k2 0 amnr 6

Note in the isotropic case that the above expressions reduce to the relations

obtained by Lee (1993) and used in the previous reports. Accordingly, it is desired that
the normalization of the stress coefficients also yields their isotropic forms which were

2,2
obtained by factoring the common term E . Paralleling this effort, let
b
7r h2 ( )
where the coefficient vectors C, C;, and C, are defined as
b2
Chnz=——— (128)
=0 =0
72 Egq h*
) 2
¢ -2 g, (129)
" Eegh
and
412
C =gy (130
7" Egq

To complete this normalization, it remains to specify an “equivalent” Young’s modulus
Eeq. Relying on the definition of kg for isotropic panels, it is suggested here that
3,3
48 a’b
— —————(1-viz va1) ko (131)
+b )2

E, 7[4 3 (a2

q =

2.5 The Prototypical Equation

The derivations of the previous sections have demonstrated that the structural
dynamic response of the panels, composite or isotropic, is governed by the same
equations, i.e.

§+26g+0f (=s)g+vq> =po + ple) (132)
for the displacements and Eq. (127) for the stresses. Accordingly, most of the ensuing
discussion will focus on a single example of application without lack of generality.
Specifically, the clamped isotropic titanium plate already investigated by Vacaitis
(1994) will be reconsidered here. The dimensions of the panel were selected as a = 8.2
in, b =20.0 in, and 4 = 0.06 in. The acoustic excitation was assumed to be a white noise
random process (uncorrelated fluctuations over time but fully correlated over space) of
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2
spectral density Sy =£270— 105PL/10 yhere Po =29107° psi is the reference pressure
T

and SPL denotes the sound pressure level in dB. The panel was assumed to be subjected
to a uniform temperature increase of T so that the constant term p in Eq. (132)

vanishes. Then, in their dimensionless forms (see Lee, 1993), the parameters of Eq. (132)
and (127) can be expressed as

co%=l3§([34+2[52/3+1) (133)
s=T, (134)
y= 323B {B +B +2v+:( { (B +B” )+4([3+B‘1)_2+(4|3+B"1)_2+(B+4B‘1)_2]}
(135)
Colx, y,2)= - ARETIJERS), T (136)

3(1-v2) (32+1)

16 z ([32 cos2mx sin? ﬂ; ~vsin? nx cosZn;)

il 2}=- (137)
3(1-—v2)
2 2 - 2 -
Cy(x, y,2)= 2([3 +v) _29%{13 cc;sZny_B 010654”}
3(1—\/2)
(138)

32| cos2nx COS27I; cos2mx cosdmy Y, cosdnx COS2TC;

9 2(B+B"‘ (p+45—1)2 (413+5—1

where B=b/a, x=xla, y=ylb, z=z/h. Further, the damping ratio ¢ and Poisson’s
ratio v were set to 0.01 and 0.34, respectively. Finally, in the above dimensionless form
the power spectral density of the white noise pressure term p(t) is expressed as

8 2
— ___144(_@_J Mf.‘&l (139)

pp nh E? 96
where '
2 4
0= 12(1 4v )pbz.  (140)
s Eh

The numerical integration of the equation of motion, Eq. (132) proceeded as
follows. First, an estimate of the time scale in the fluctuations of the process q(t) was

obtained by considering the undamped linear natural frequency ®( and a time step of
0.2/0y was set for the numerical integration of Eq. (132). This selection implied a
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maximum (Nyquist) frequency (see Oppenheim and Schafer, 1975, for a discussion) of
oy =5moy so that both the acoustic excitation p(r) and its corresponding panel
response q(t) were defined in the frequency interval we [— Wp,® b]- Then, the constant

value of the acoustic loading in the n time step, D , was generated according to its
g Py g

specified power spectrum (see Mignolet, 1993, for some fast algorithms to accomplish
this computation). If the excitation process is white noise with constant power spectral

density Sy, then the samples p, form a sequence of independent random numbers with

common mean, El:pn}=0, and variance E[;i]=10nm0 Sp. Next, Eq. (132) was

numerically integrated with the specified time step by a Runge-Kutta-Verner of orders
five and six (IMSL routine DIVPRK). Finally, the discrete values of the response
deflection q(t) were used to produce the time histories of the stresses according to Eq.
(127).

The results of this numerical integration are shown in Fig. 2.2-2.13. A few
preliminary observations can be drawn from these figures. First, note the clear
nonlinearity of the displacement-stress relation in the neighborhood of the bottom
buckling state. Indeed, although the displacement time histories corresponding to sound
pressure levels of 119 and 134 dB are fairly symmetric with respect to this level, the
stresses are not, exhibiting a definite “bottoming out”. That is, during the excursions of
the panel around this position, the stress process achieves a minimum value dictated by
the quadratic relation (127). This peculiarity is not encountered around the top buckling
position since Eq. (127) remains monotonic in this region.

A different perspective on the behavior of the displacements can be gathered from
the power spectral density plots of Fig. 2.8-2.10. In particular, it is observed that this
spectrum exhibits only one peak at a sound pressure level of 104dB, corresponding to the
fluctuations around the buckling states. As the SPL increases, so does the amplitude of
the motions and the response exhibits increasingly nonlinear features, as the second
dominant frequency shown in Fig. 2.9 for a SPL of 119dB. Note that this second
frequency appears to be a subharmonic of order 1/2 of the “fundamental”. Finally, at still
higher SPL, see Fig. 2.10 for SPL = 134dB, the displacement process has lost its
narrowbandedness and exhibits a single, rather wide peak.
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Figure 2.2 Time history of the displacement, s = 1.8, SPL = 104dB
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Figure 2.3 Time history of the displacement, s = 1.8, SPL = 119dB

25




2.00E+00
1.50E+00
1.00E+00 -4
5.00E-01
0.00E+00 Sl
5.00E-01 RIS

-1.50E+00

Figure 2.4 Time history of the displacement, s = 1.8, SPL = 134dB
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Figure 2.5 Time history of the stress, s = 1.8, SPL = 104dB
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Figure 2.7 Time history of the stress, s = 1.8, SPL = 134dB
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Figure 2.9 Power spectral density of the displacement process, s = 1.8, SPL = 119dB
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Figure 2.10 Power spectral density of the displacement process, s = 1.8, SPL = 134dB
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Figure 2.11 Power spectral density of the stress process, s = 1.8, SPL = 104dB
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SECTION 3
EQUIVALENT LINEARIZATION TECHNIQUES

The estimation of the fatigue life of the panels can be viewed as a two-step
process. Indeed, it is first necessary to evaluate the statistical characteristics of the

dynamic response, i.e. of the displacement q(¢) and velocity ¢(r) satisfying the nonlinear
stochastic differential equation (132). In the second stage, the damage generated by the
stresses, see Eq. (127), is then estimated from the known moments of q(t) and q(t).

The determination of the exact values of the moments of the displacement g(t)

and the velocity q(t) satisfying Eq. (132) and corresponding to a white noise excitation

p(t) is easily accomplished by relying on the joint probability density function of these
two random variables, as given by Lutes and Sarkani (1997). The availability of this
distribution is however rather accidental as Eq. (132) belongs to a limited class of
stochastic differential equations for which an exact solution of the Fokker-Planck
equation can be obtained. For example, such a closed form solution is unavailable if the
acoustic excitation p(t) is a colored noise. Further, known expressions for the joint

distribution of the solution of a system of stochastic differential equations, as would be
obtained for example in a multiple mode analysis of the panel, are extraordinarily limited.
These comments clearly indicate that the development of a general strategy for the
estimation of the fatigue life of the panels cannot rely on exact expressions for the joint
probability density function of the displacements and velocities. Rather, it is necessary to
rely on an alternate, general purpose methodology for the estimation of the moments of
q(¢) and §(r). To this end, the equivalent linearization method (see Roberts and Spanos,
1990) will be used.

According to this methodology, the nonlinear equation (132) is replaced by an
“equivalent linear” one of the form

§+2600 §+keg @ =Ppoy + Plt) (141)
where the parameters k,, and ; eq 2T€ selected so that Eq. (141) represents “at best” Eq.

(132). Specifically, these coefficients will be chosen so that the modeling error
- -\
Epnod = E[{(wﬁ (1-s)g+v4> - po )- (ko 4 - Peg )} ] (142)

where £ [ ] denotes the operator of mathematical expectation, is minimized.

3.1 Equivalent Linearization Strategy #1
Proceeding with a differentiation of Epqoq with respect to p,, and kg, yields,

respectively,
c)% (1—s)pq+yE[q3] —;O_keq ”q+;eq=0 (143)

03 (-5)(o3 +13 e v Elg*| ~Fong —keg 02 402 )+ pegug =0 (199



where p, and 02 denote the mean and variance of g(f), i.. Hg = E[q] and

0'?] =F [(q - q)z] . It is clearly seen from Eq. (143) and (144) that the evaluation of the

parameters k., and ; eq requires the knowledge of the yet unknown moments ., and
63. This indetermination is resolved by replacing the exact values of the mean p, and

variance cfl of the displacement g(t) satisfying Eq. (132) by those associated with the

solution of the linear differential equation (141). Specifically, following standard random

>
g =—t and op = Pl (145), (146)
keg

Then, the solution of the four coupled nonlinear algebraic equations (143)-(146) yields

the values of p g, 0(2] , ; eq and k. Of primary interest here are the two moments and

thus, eliminatin I ,and k,, from the above equations yields
€ Peg eq q

ol (1—s)pq+yE[q3] = Do (147)
nS——

ol (1—s)(c?,+p§)+y5[q4]=;0 uq+2—€’;%- (148)

Note further that the evaluation of the mean and variance is accomplished on the basis of
the linear stochastic differential equation (141) or equivalently under the assumption that

q(t) is a Gaussian random process. Then, proceeding consistently, the third and fourth
order moments appearing in Eq. (147) and (148) can be expressed as

E[q3] =3p, 05 + 1] (149)
and
4 4 2 2 4
E[q ] =3oq+6pq Gy tHg- (150)
In solving Eq. (147)-(150) for the required moments p, and 0'3 , two separate cases must
be considered, i.e. py #0 and pg = 0. Since the latter condition is possible only when

;0 =0, the analysis will focus separately on the panels experiencing a temperature

gradient through the thickness (;0 # 0) or a lack thereof ( ; 0 =0)

3.1.1 Equivalent Linearization Results: ;0 #0
After some algebraic manipulations (including a multiplication of Eq. (147) and

(148) by p.2 ), it is found that the mean value p, satisfies the following sixth order
q q

algebraic equation
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nS——
272 Mg +2y 08 (l—s)pg-—po yp3+3y[2gwo}uq +powg (1=5)ug - po=0.

(151)
Once the value of p, has been obtained from the above equation, the variance ctz] can be

evaluated from Eq. (147) and (149) as

62_[;0“"% (1-5)1q =113

(152)
7 371y

3.1.2 Equivalent Linearization Results: ;0 =0
When ;0 =0, Eq. (147) admits a symmetric solution of the form p, =0 but this
solution is not necessarily the only one so that the two separate sub-cases ;0 =0;p,#0

and ;0 =0;pgy =0 must be investigated.

1.1.B.1 Sub-case #1: py=0;p, #0
If the solution p, =0is not desired, the algebraic manipulations carried out in

connection with the derivation of Eq. (151) can be repeated to yield

27u3+2a%(L—Qp§-+3[;£%i} =0 (153)
so that
2 1 2 4 2 Ry
Mo =3y —moﬁ—s)iJwOO—s)-—6yzcw0 : (154)

Once the value of p, has been obtained from the above equation, the variance 63'] can be

evaluated from Eq. (152) as

2 2
-0y l-5) —-7p
ol = 0 (1-5) 11 . (155)
3y :
The above solutions, Eq. (154) and (155), exhibit some very interesting features. In
particular, in the limit of a zero acoustic excitation S;; — 0, the mean value converges

toward the buckling states Q) and Q,. Further, if s <1, i.e. when the thermal effects are

not sufficient to buckle the plate, there is no positive value of pé in Eq. (154) so that no

solution of this type exists. Finally, the existence of p, requires the term inside the

‘ nS——
square root to be positive, or equivalently that o? (l—s)2 —6yz—@—20. This
@9
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inequality implies that a nonzero mean is not possible when the acoustic level exceeds a
certain threshold. Numerical results indicate that this threshold closely match the sound
pressure level (SPL) at which the snap-throughs become very frequent.

1.1.B.2 Sub-case #2: py =0;p,4 =0
On the contrary of the mean value given by Eq. (154), the solution p, = 0 always

exists when ;0 =0 since Eq. (147) and (149) are identically satisfied. The corresponding
value of the variance is then given by Eq. (148) and (150), that is

nS——
oo 1 \/g(l—s)2+6y g:o” -3 (1-3)|. (156)

"6y

3.2 Equivalent Linearization Strategy #2
It is known (see Lutes and Sarkani, 1997, for example) that the exact probability
density function of the displacement g(#) is bimodal for all values of the sound pressure

level, or equivalently for all values of S;;, provided that s>1. The equivalent

linearization formulation developed above is consistent with this property as long as there
exist mean values satisfying Eq. (151) or (154). For larger values of the sound pressure
level, however, the above equivalent linearization fails to accurately capture this property,

for example, for ;0 =0 and S;; large enough the only acceptable mean value p, is

zero and the bimodal character is lost. To recover this important property, it is suggested
here to proceed with a different equivalent linearization formulation in which the mean is
imposed to be different from zero and the standard deviation is obtained to minimize the
modeling error of Eq. (142). Physical arguments motivate the selection of the imposed

mean values to be the buckled states, i.e. u, =0 or },lé =, , where

Q 02 (1-5)0;+70Q} =0 Q%0 =12 (157)
Accordingly, Eq. (145) requires that
Peg =keq O (158)
so that the modeling error, Eq. (142), can be rewritten as
— 2
Ernod =E[{(w% (1-5)a+14> = Po)~keg (1-0)] ] (159)

Differentiating the above expression with respect to the remaining parameter, &, , yields

the equation
o? (1-5) Elg (g -0+ 1 Elg® (- 0| keg El(a-0:)2] =0. (160

Then, using Eq. (146), (149), and (150), it can be shown that the above relation reduces to
the following equation for the variance of g,

7 S—
4 2 2 2 pp _
3ycq+[3yQ,- + 0 (1—s)]oq Tt aq =0 (161)

34




the solution of which is

2. 2 2. 2 2 mS
—[3yQ,- + 0, (1—s)]+ [3yQ,- + 0 (l—s)] +67

2 Ewg
o2 = & . (162)

Note that this solution always exists for s >1 as expected from the bimodal character of
the exact probability density function.

3.3 Numerical Results

The prototypical problem analyzed in the previous section was reconsidered here
to assess the validity and accuracy of the equivalent linearization strategies. For
simplicity, it was again assumed that the effects of the gradient through the thickness are

negligible so that :z_yo =0.

Then, shown in Fig. 3.1 are the standard deviations of the displacement g obtained
by Monte Carlo simulation of the fully nonlinear equation Eq. (132) and by the
equivalent linearization strategies #1 and #2 for s=1.8 as a function of the sound

pressure level (SPL) in dB. The behavior of the Monte Carlo results is particularly
informative, at very low SPL the panel vibrates with a very low amplitude around one of
the buckled states. Since these two positions are equally probable and equally distant
from the undeformed position ¢ = 0, the overall mean is zero and the corresponding
standard deviation should be very close to Qy, as confirmed by Fig. 3.1 (for s=1.8, Q| =
0.448). As the sound pressure level increases however, two different phenomena occur.
First, the level of vibration around the buckled states increases slightly and
unsymmetrically, i.e. the vibrations are larger toward the undeformed position because of
the decreased local stiffness exhibited by the restoring forces. This lack of symmetry of
the response induces a decrease of the mean displacement of the motions around each of
the buckled states, i.e. p; <Q;. The second effect is the appearance of snap-throughs,
although very infrequent at first, that populate the region in between the two buckled
states. Both of these factors imply the decrease of the standard deviation seen in Fig. 3.1.
This process continues until the response becomes dominated by the snap-throughs in
which case an increase in the excitation level mainly induces an increase in the level of
response, i.e. the maximum displacement away from the undeformed position.
Correspondingly, the standard deviation then starts increasing as a function of the sound
pressure level as shown in Fig. 3.1. These observations would tend to confirm the earlier
conjecture that the motion at low SPL is governed by the fluctuation processes only while
at high excitation levels it is the snap-throughs that dictate the panel response. More
importantly, it would appear that the region in which both of these processes are
important is quite narrow and is located near the minimum of the standard deviation.
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Table 3.1. Maximum value of the sound pressure level for which nonzero mean
equivalent linearization solutions exist as a function of temperature s.

s 1.05 1.8 3 5
SPL (dB) 97 120 129 135

Considering next the equivalent linearization results, note first that when nonzero
mean solutions exists, the corresponding overall standard deviation can be computed as

1 2
Gq=\/—2~(u12+6‘12+u2+02). (163)

Next, on the basis of physical arguments, the equivalent linearization results
corresponding to the first approach were obtained for “low” SPL, i.e. for sound pressure
levels lower than the threshold values given in Table 3.1, by the combination of the

models associated with nonzero mean values p, closest to O and Q,. However, when

the excitation was large enough that no real solution of Eq. (154) could be obtained, the
zero mean model characterized by the variance of Eq. (156) was used. The results of Fig.
3.1 clearly demonstrate that the combination of the two nonzero mean solutions yields an
extremely accurate estimate of the overall standard deviation but that its zero mean
counterpart (for SPL>120dB) can severely underestimate this moment although the

accuracy appears to be improving as the sound pressure level increases past the
fluctuation to snap-through transition region. Figure 3.1 also demonstrates that the second
equivalent linearization strategy is not as reliable as the first one except for
SPL >120dB. In fact, it exhibits the wrong trend in the low sound pressure level regime,

the estimated standard deviation increases as a function of the SPL. This undesirable
property is associated with the fixed value of the means p; =Q; which does not allow

the good modeling of the unsymmetry of the local stiffness discussed above. On the basis
of these results, it is suggested to use the equivalent linearization strategy #1 when
nonzero means exist and to rely the second strategy when such solutions are not possible.
The above trends occur consistently through the investigated range of temperatures
sell,5].

It should further be noted from Fig. 3.1 that the average of the standard deviation
estimates corresponding to the equivalent linearization strategies 1 and 2 approximates in
fact remarkably well its exact counterpart for SPL2120. A similar accuracy has also

been observed at other values of the temperature s indicating that this averaging could
consistently be used to refine the equivalent linearization estimates.

A different perspective on the reliability of the equivalent linearization techniques
can be obtained by comparing the produced probability density functions with their exact
counterparts. This comparison is presented in Fig. 3.2-3.7. Note first that the improved
accuracy of the standard deviation estimate obtained from the equivalent linearization #1
at “low” SPL is obtained by allowing a mean shift of the corresponding distribution. This
effect is small but apparent, see Fig. 3.2 for SPL = 114dB and s = 1.8. This shift
increases with the sound pressure level and provokes an undesirable error in the
prediction of the location of the peaks of the probability density function, see Fig. 3.3 for

36




SPL = 119dB. The equivalent linearization strategy #2, on the contrary, maintains the
location of the peaks at the buckling states as shown in Fig. 3.4 but overestimates the
height of the peak. Note also that both methods fail to capture the probability of crossing
the origin, i.e. of the occurrence of snap-throughs.

At higher SPL still, the equivalent linearization strategy #1 fails to produce a non-
zero mean solution resulting in a substantial overshoot of the probability of crossing the
origin, see Fig. 3.5. Although the second equivalent linearization approach appears to
capture quite well the exact probability density function for this condition, as shown in
Fig. 3.6, it also will produce single peak distribution as the sound pressure level continues
to increase or equivalently as the temperature decreases, as can be noted from Fig. 3.7.
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Figure 3.1. Standard deviations of the response as functions of the sound pressure level
obtained by simulation and by the equivalent linearization strategies #1 and #2 for s=1.8.
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Figure 3.2 Probability density functions of the displacement, exact (---) and estimated
according to the equivalent linearization #1 (+++), s = 1.8, SPL = 114dB.
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Figure 3.5 Probability density functions of the displacement, exact (---) and estimated
according to the equivalent linearization #1 (— ), s = 1.8, SPL = 134dB.
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combined (oon), s = 1.8, SPL = 134dB.
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SECTION 4
FATIGUE DAMAGE PREDICTION

The second predictive aspect of this investigation focused on the estimation of the
accumulated damage by using the equivalent linearization results. That is, it was desired
to duplicate at best rainflow results (Downing and Socie, 1982) obtained from the
numerically evaluated displacement/stresses time histories from the mean and variances
given by Eq. (151), (152), (154)-(156), and (162). To this end, three approaches of
increasing complexity were investigated, all of which rely in some fashion on the
Rayleigh approximation (see Lutes and Sarkani, 1997) and on an expected
narrowbandedness of the response processes (displacement, velocity, stresses, etc.). In
assessing the properties of each of these approximations, it should first be noted that the
displacement ¢ is not a Gaussian process because of the cubic nonlinearity of Eq. (132)
and that the displacement-stress relationship is also nonlinear as seen in Eq. (127). Thus,
even if the displacements were Gaussian, the stresses would not. In this light, the three
formulations to be presented in sections 4.2-4.4 rely on the following assumptions:

(1) both stresses and displacements are Gaussian (“standard” Rayleigh

formulation)

(2) the displacements are Gaussian but the stresses are not, the nonlinear
displacement-stress relationship describes the distribution of stresses
(nonlinear displacement-stress formulation)

(3) the displacements are specified as the sum of Gaussian-type processes
describing the specificities of the fluctuations around the buckled states and
the snap-throughs. In this detailed model, the nonlinear displacement-stress
relationship describes the distribution of stresses (phenomenological
formulation). .

Before these three distinct approaches are described, however, an exact formula

for the accumulated damage will be presented that was found quite useful in interpreting
the numerical results.

4.1 Damage Accumulated: An Exact Formula
In assessing the damage accumulation in the panel, it is first assumed that the
material is characterized by the S-N curve

Np=KS;" (164)

where N ¢ is the number of cycles to failure when the stress range is S, , and K and m

are material constants. Further, adopting a linear damage accumulation rule, the total
damage in the panel after a time T, can be estimated as

p(r )=n0(\g") 1 _1 "‘(ﬁﬁ")sm (165)
)= & aNgk) 2K T
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where nc(Tﬁn) denotes the total number of half-cycles in the time interval ¢ e [O, T ﬁn]

and S, ; represents the stress range in the k™ half-cycle. Note that this quantity can also

be represented as
S =|S() - Stx)] = 1‘:_1 $(c) de| = 1:‘4!5‘(1)! & (166)

where t;_; and f; denote the beginning and ending times of the stress range S, ;.

Further, the last equality in the above relation holds because of the constant sign of the
stress velocity S(t) in the interval f e [tk_l,t k]- Combining Eq. (165) and (166) in the
special case m = 1 yields

1 nc(Tﬁn) 1 nC(Tﬁ") . 1 T | &
D(Tﬁn)=2—K kZ::l S, k=37 Z;I 1‘:_1]5(:)|dr=2—ELf $)|de. (167)

Moreover, relying on the stationarity of the stress velocity process, it is found that the

expected damage accumulated in the time interval ¢ € [0, T ﬁn] can be expressed as

Elp(1n)= 5 [ al|s@) a5 ElI3[) [+ r =5 87 168

A final simplification of the above relation can be obtained by noting from Eq. (127) that
$=¢(C1+2C5 q) (169)
where the velocity ¢ is known to be Gaussian with mean zero and standard deviation

1A
o, =1}——§—pp— and to be independent of the displacement g (see Lutes and Sarkani,
®o

1997). Then,

E[s{)= Ellgl) Ellc +2.¢; 4= \E o4 E[|Cy +2C5 4] (170)
and the expected damage is given by
E[D(Tﬁ,,)]=——é\/_%<— o4 E||C1 +2Cy q] Tjin- (171)

A generalization of the above relation for m #1 is unfortunately unavailable, even
for integer values of m . Indeed, in these cases, an expression for the expected damage in
terms of the m point correlation of the stress velocity process can be derived by
proceeding as in Eq. (166)-(168). However, the lack of existence of a closed form
solution for the transition probability density function of the displacement ¢ and velocity
g prevents the derivation of a manageable expression for the expected damage. One must
then resort to either rainflow simulations or to the use of approximate relations as derived
in the next sections.
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4.2 Damage Accumulated: “Standard” Rayleigh Formulation

The simplest approximate expression for the accumulated damage used in the
present investigation is traditionally referred to as the Rayleigh approximation (see Lutes
and Sarkani, 1997). It is derived by assuming that

(i) the stress process S(f) is Gaussian

(ii) the stress process S(f) is narrowband (required unless m = 1).
Under these two conditions, it can be shown (see Lutes and Sarkani, 1997) that

Elp(74, )= 51;5- :—z E[aD] Ty, (172)

where og and o are the standard deviations of the stress and stress velocity processes.

Further, E[AD] denotes the expected damage accumulated over one cycle of the stress
process which can be estimated as

E[AD]= = r1+-2— ol (173)

so that

3m/2
E[D(Tﬁ,,)]=-21—nz; r(1+g’-)c$ oF Tpn. (174)

It is known that the Rayleigh approximation is exact when m = 1 under weaker

conditions that the two stated above, (i) and (ii). In fact, when m = 1, it is only necessary
that the stress velocity process be Gaussian. This property can be confirmed by noting

that Eq. (174) reduces to Eq. (171) whenm =1and C, =0.
The determination of the standard deviations o5 and o¢ can be accomplished

from Eq. (127) and (169). Specifically, relying on the Gaussian character of g and ¢, it is”

found that
0§=C12 G?]+C22 (4u3+20'?])c‘2]+4C1 Cy pg cg (175)
and '

2 2 |2 2.2 2
o's=c>'qIC1+4C2 (J.Lq+cq)+4C1C2pq . (176)

It should be noted that this formulation is simple but it is also inconsistent: it assumes that
both the stresses and displacements are Gaussian and, at the same time, that they are
nonlinearly related through Eq. (127) and (169).

4.3 Damage Accumulated: Nonlinear Displacement-Stress Formulation
The removal of the inconsistency of the Rayleigh formulation described above
can be accomplished by formulating the entire problem in terms of the displacement g
which here will be assumed to be a Gaussian process (or a combination thereof). The
approach presented below follows the non-Gaussian correction scheme introduced by
Lutes and Sarkani (1997). For clarity of the presentation, assume momentarily that the
displacement-stress relationship § = g(q) is monotonic (this is clearly not always the
case for Eq. (127)) and that the response processes are narrowband. Then, it can be
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argued that the positive (S *Y) and negative (S™) peak stresses of a given stress range
correspond to peak values of the displacement g. Further, under the narrowbandedness
assumption, the peak deviations from the mean displacement follow a Rayleigh
distribution and the positive and negative maximum deviations of a given cycle are
approximately equal. That is,

s*=glug+o,u) and S =glu, -0, u) 177)

where u is a standard Rayleigh random variable. Accordingly, the expected damage
accumulated over a cycle is

E[AD]=71<— EU St -8~ |m]=—11z:[“ g(pq +04 u)—g(pq —-04 u)’m ]uexp(—u2 /2)du

(178)

Equation (178) is not directly applicable here since Eq. (127) is not monotonic.

Indeed, there exists an extremum (minimum or maximum) of the stress for
2

g=q, = — G and the corresponding stress is S, =Cq — —L_ On physical grounds,
C, 4C,

it is expected here that the membrane stresses yield a stretching effect so that C; 20 and

the extremum is always a minimum. Thus, for all values of u 2u, =| gde — Mg l/ G4, the

stress process does not undergo a single cycle of magnitude ‘S TS ! but rather two

separate cycles of respective amplitudes S*~S,| and

Se-S7|=|s7-5.|.

Accordingly, the expected damage accumulated over the cycle of displacement is
- L slisg v oy )y =g )" Juesala 12)a
E[AD]—-EIIgp.q+un—gpq—cqu| uexp\-u”“/2})du
0

+% J'“ g(“q t 0y u)—Se lm +| g(uq —0y4 u)—Se Im]uexp(—u2 /2)du (179)

U,

where
S=g(g)=Co+Crq+Cyq". (180)
Finally, relying on the expected narrowband character of the displacement process

and the assumed Gaussian distribution of the displacement and velocity processes, the
period can be estimated through the expected rate of upcrossing of the mean value as

2nc
T = 9 5o that the expected damage accumulated in the time interval ¢ € [0, Tﬁn] is
G .
q9
given as
1 94
Elp(74 )= {2— —‘L] E[AD] T, (181)
T o, -
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For example, for m =1, Eq. (179) becomes

2 2
2 2 ., u
E[AD]"“]‘{‘(C(') —Se)exp{‘ijjJ+EC1 —Iue Iexp[—;%]+cq CD(l—cLlJ
q q

q
2 2
20 62|14t | exp| —2e (182)
2%q 2 2
K 20q ZGq
where
Ch=Co+Cipg+Cang; Ci=C1+2Cypng; Cy=Cy (183a-c)
and
X u2
o(x)= jexp —=|du. (184)
; 2
As a check, consider the case Cy =0 for which g, = so that Eq. (182) reduces to
c 1 C
_ q _ 1
E[AD]=Cy {2n—Z and E[D(Tﬁn)]-\/—z;n—?cq Ty s expected from Eq. (171).

The case C; =0, py=0 is also very important as it corresponds to the most
strongly nonlinear displacement-stress relationship and thus represents a good test of this
second damage accumulation formulation. Accordingly, it is found that ¢, =0 and
S, =0 so that

4

E[AD]=—Cyof  and £[plr, )= 2 <2

K

Al

649q T fin (185a,b)

4.4 Damage Accumulated: Phenomenological Formulation

The nonlinear displacement-stress formulation presented in the last section
accounted fully and exactly for the nonlinear g to S transformation so that improvements
over this strategy require the consideration of non-Gaussian displacements. In keeping
with the stated goals of this investigation to obtain an estimation strategy of the damage
accumulated that can be extended to multi-modes, it is proposed here to introduce a
formulation based on a “combination” of Gaussian processes that is valid for panels
statically buckled, i.e. for s>1. Specifically, in accord with the non-zero mean
equivalent linearization strategies developed above, it will be assumed that the motion
around each buckled configuration follows a Gaussian distribution so that the probability
density function of g is the weighted sum of two Gaussian distributions of means exactly
or approximately equal to the buckled states. That is,

—us )P RY
Pat) @) =41 —— exp(———-—(q k) }“]2 —-—\/ﬁc exp[——————(" “2)} (186)
2

\J27 o) 20} 2 c%
where the probabilities (weights) g, and g, are selected so that

g1 +42 =1 and g (1—s)E[q]+vE[q3] =pg.  (187ab)
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i.e., so that g has a total probability of 1 and that Eq. (132) is satisfied at least on average.
In particular when p, =0, it is directly found that ¢; =¢q, =1/2 as expected. Note in

Eq. (186) that the means pj, p, and standard deviations o1, o, can be estimated from

the equivalent linearization #1 (provided solutions 11, o to Eq. (151) exist) or #2.

Once the probability density function of g , Eq. (186), is known, it is necessary to
evaluate the damage accumulated. To this end, it is suggested here to investigate
separately the fluctuations around each buckled configurations and the snap-throughs
from one such position to the other. Both fluctuation and jump processes will be
considered to be narrowband so that their corresponding damages can accurately be
estimated by Rayleigh’s formula,

E|D(T 4 | = E[AD] (188)

where 7 is the expected number of cycles occurring in the time interval of length 7', To

exemplify the determination of the damage per cycle, E [AD], and the number of cycles n,
consider a half-cycle of motion with g(tx_; )= q(t &) and note that there are three distinct

possibilities for the displacement time history, i.e.
(a) fluctuation around the top buckled state
(b) snap-through from top to bottom buckled state
(c) fluctuation around the bottom buckled state
as depicted in Fig. 4.1. To evaluate the likelihood of each of these three trajectories, it is

first necessary to estimate the probabilities p; and p, that the peak displacement
g(t4_1) is around the top and bottom buckled states, respectively. To this end, assume for

simplicity that ;O =0 and introduce the probability of snap-through p so that the

probabilities of the trajectories (a)-(c) are

pa=p(1-p)  pp=pip and pc=p,. (189a-c)
Accordingly, the probability that the valley of the half-cycle be located near the bottom
buckled state is p, + p. which should also equal to p; since the displacement process ¢

is symmetric when ;0 =0 It is then required that

Pp+Pc=pP1P+tP2=D1 (190)
Since the total probability for the peak location must equal 1, one also has the condition
p1+py=l (191)
and the solution of Eq. (190) and (191) yields
1-
= and py ==L (192a,b)
2-p 2-p

In fact, the peak to valley transition process has been represented as a Markov
chain with a transition probability p which need now be evaluated. This determination
requires a physical characterization of the occurrence of snap-throughs. To this end, note
that snap-throughs are associated with the existence of a softening region, see Fig. 4.2, in
which the local stiffness is negative. The domain of attraction around one of the buckling
states could be defined as the region in which the potential is less than or equal to the

value at ¢ = 0. The values Q;7 and Q,7 bounding this region are then such that
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1 1
50)3 (1-s)Q,.2T+ZyQ;‘T=0 (193)

2 —
Qir =% __Z_OJL(L_S) . (194)
u Y

Then, it is suggested that a snap-through occurs, i.e. trajectory (a) turns into (b), when the
extreme displacement corresponding to the valley of the half-cycle, q(t k ), falls outside of

the domain of attraction, i.e.

TR
p=Prlg(x)>0rr]= exp{— (—Q—l%l)—} (195)

G

from which it is found that

where the last equality holds in view of the expected Rayleigh distribution of the peak
displacement values g(ty ).

The combination of Eq. (192) and (195) yields the probabilities associated with
the three possible trajectories (a)-(c). Further, the corresponding damage contributions

E[AD,], E[AD,], and E[AD,] can be evaluated as in Eq. (179), (180), and (182) so that
the total damage can be evaluated as
E|D(T i )|= 14 EIAD, ]+ ny E[ADy]+n. E[AD,] (196)
where n,, np, and n, are the number of cycles corresponding to each type of trajectory
(a)-(c). These values can be expected to be proportional to the probability of occurrence
of their corresponding trajectory, Eq. (189), that is
ng=pi(1-p)N np=pipN and n,=py N (197)
where N denotes the total number of cycles. In turn, this quantity can be estimated from
the total time 7', as
Za b T o1y, (198)
Va Vb Ve
where the upcrossing rates v,, vy, and v, are estimates of the frequencies of the

narrowband trajectories (a)-(c). The Gaussian character of the motions around the
buckled states suggests that

1 O 1 O
vy =—— and Ve=——1 (199a,b)
27t © 1 2n G2
where Gy, and G, are the standard deviations of the velocities associated with the

fluctuations around the top and bottom buckled states and can be determined from either
equivalent linearization #1 (provided solutions pj, py to Eq. (151) exist) or #2. In fact,

nS——
they are both equal to the exact expression G, = PP
7 Y2&w

The determination of v, proceeds similarly but in connection with the overall
probability density function of the displacements, i.e. Eq. (186). Specifically, the
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upcrossing rate of the undeformed panel configuration, ¢ = 0, is given in terms of the
joint probability density function of g and ¢ as (see Lutes and Sarkani, 1997)
(e 0]
7 =vg = Iv pqq(O,v) av. (200)
0
Assuming that the displacement ¢ and velocity ¢ are statistically independent and that

the latter random variable is Gaussian, it is found that

iy
vy =vg =pg(0) == (201)

o

where pg (0) is given by Eq. (186) for g =0. Note the assumptions stated above are not

particularly restrictive since they are known to hold for the processes satisfying either the
exact equation of motion, Eq. (132), or any of its equivalent linearization approximations.
Combining Eq. (197)-(199) and (201) yields estimates of the number of cycles

n,, ny, and n_ corresponding to each type of trajectory (a)-(c) and completes the
damage accumulation formulation.

4.5 Numerical Results

To establish baseline values the accumulated damages, the numerical integration
of the equation of motion (132) was performed as discussed in section 2. From the time
histories of the displacement, the corresponding realizations of the stress(es) were
obtained through the quadratic relation, Eq. (127). Then, the rainflow cycle counting
strategy of (Downing and Socie, 1982) was used to identify stress ranges and evaluate the

accumulated damage over a fixed interval of T fin= 32,000 time steps. In keeping with the

dimensionless formulation of the equation of motion, the damage was normalized
— b2 "
according to D=K|—————| D. Finally, the values of the damage presented in
Ey n? h?

these figures are in fact averages over 100 realizations of stress time histories to reduce
the variability of the damage estimates. These 100 simulations were divided into two
groups of 50 each with the excitation records in the second set equal in magnitude but of
opposite sign to their counterparts in the first set. This procedure was required to ensure
that exactly half of the simulations at low sound pressure levels would lead to fluctuations
around the upper buckling position with the remaining half around the lower one.

Shown in Fig. 4.3-4.10, are the normalized damages computed on the basis of the

stress o, at the middle of either the top surface of the panel (Z=0.5) or its neutral plane
(Z = 0). Physically, it can be seen that this stress component is dominated, when Z= 0.5,
by the linear bending terms, C) ¢, which is completely absent when Z = 0. Accordingly,
it can be expected that this latter situation provides a worst case scenario from the
standpoint of nonlinearity of the displacement-stress relations.

Turning now to the prediction approaches, the equivalent linearization strategy #1
was used to provide the estimate of the standard deviation of the displacement process
required by the “standard” Rayleigh and nonlinear displacement-stress formulations. On
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the contrary, the phenomenological approach relied on the results of the second
equivalent linearization strategy, consistently with the basis of this numerical technique.
An analysis of these results demonstrates that both the Rayleigh and nonlinear
displacement-stress formulations yield reliable estimates of the accumulated damage at
“low” sound pressure levels, i.e. when snap-throughs are rare events. These estimates
were obtained by averaging the damages corresponding to each of the two nonzero mean
models. In effect, this procedure fully accounts for the fluctuation processes but neglects
the damage associated with the infrequent snap-throughs.

As the SPL approaches the threshold above which the equivalent linearization
strategy #1 fails to yield a nonzero mean, snap-throughs are becoming more frequent and
both the Rayleigh and nonlinear displacement-stress formulations underestimate the
actual damage. In this condition, the phenomenological formulation provides very
reliable approximation of the accumulated damage provided that the value of the

probability density function p, (0), governing the rate of snap-throughs, is accurate.

Finally, at high sound pressure levels, i.e. higher than the above threshold, it was
found that the Rayleigh approach typically overestimated the exact accumulated damage
and that the nonlinear displacement-stress formulation underestimated this value.
However, the average of these two estimates (shown in Fig. 4.3-4.10 as “Final™) has
consistently been found to be an accurate approximation of the damage.

In view of the above results and comments, it is suggested that the nonlinear
displacement-stress formulation be used until the sound pressure level approaches the
threshold at which the equivalent linearization method #1 stops yielding nonzero mean
solutions. Then, in a small region below this value, the phenomenological formulation

should be used with an accurate estimate of pg (0) Finally, above the threshold, the

approximate accumulated damage should be obtained as the average of the estimates
provided by the Rayleigh and nonlinear displacement-stress formulations.

The above discussions have focused on the prediction of the accumulated damage
associated with a specific stress component. In general however, the panel experiences a
multiaxial state of stress and it is necessary to define an appropriate equivalent stress.
Adopting a Tresca-type failure criterion, it is suggested here to compute the damages

associated with the stress components G, G, and oy —=0,,. The accumulated damage

will then be selected as the largest of these three values. This process is demonstrated in
Fig. 4.13-4.15 in connection to a composite panel similar to the one introduced by
Kavallieratos (1992) and discussed in Section 2 but with dimensions a = b = 8 in. and
different lay-ups. The damages shown in Fig. 4.13-4.15 correspond to the point at the
middle of the panel on its top surface (Z=0.5).
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Figure 4.1 Probability density function of the displacement showing
the three peak to valley trajectories (a)-(c).
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Figure 4.2 Force vs. displacement curve showing the softening region.
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Figure 4.3 Estimates of the nomalized damage as functions of the sound pressure level
obtained by rainflow analysis and by the various approximate methods
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Figure 4.4 Estimates of the nomalized damage as functions of the sound pressure level
obtained by rainflow analysis and by the various approximate methods
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Figure 4.5 Estimates of the nomalized damage as functions of the sound pressure level
obtained by rainflow analysis and by the various approximate methods
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Figure 4.6 Estimates of the nomalized damage as functions of the sound pressure level
obtained by rainflow analysis and by the various approximate methods
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Figure 4.7 Estimates of the nomalized damage as functions of the sound pressure level
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obtained by rainflow analysis and by the various approximate methods
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Figure 4.10 Estimates of the nomalized damage as functions of the sound pressure level
obtained by rainflow analysis and by the various approximate methods
for m=3,5s=1.8,Z=0.5.
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Figure 4.11 Estimates of the nomalized damage as functions of the sound pressure level
obtained by rainflow analysis and by the various approximate methods
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Figure 4.12 Estimates of the nomalized damage as functions of the sound pressure level
obtained by rainflow analysis and by the various approximate methods

for m=3,5=5,Z=0.5.
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Figure 4.13 Estimates of the nomalized damage as functions of the sound pressure level
obtained by rainflow analysis for the lay-up [90 45 -45 0]swith m=3,s=18,Z= 0.5
and for the stresses 6, (Sx), 0, (Sy), and 6, —o0,, (Sx - Sy).
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Figure 4.14 Estimates of the nomalized damage as functions of the sound pressure level
obtained by rainflow analysis for the lay-up [-45 90 45 0]; with m =3, 5= 1.8,Z2=0.5
and for the stresses o, (3x), o), (Sy),and 6, -0, (Sx - Sy).
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Figure 4.15 Estimates of the nomalized damage as functions of the sound pressure level
obtained by rainflow analysis for the lay-up [45 -45 90 0]swith m=3,s=1.8,2=0.5
and for the stresses ¢, (Sx), 0, (Sy),and 6, -0, (Sx - Sy).
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SECTION 5
SUMMARY

The focus of this investigation has been on the prediction of the fatigue
life/damage of composite panels subjected to an extreme environment, i.e. to both high
thermal effects (temperature and temperature gradients) and a strong acoustic transverse
loading. To achieve this goal, it was necessary to accomplish the following tasks:

(i) develop an appropriate structural dynamic modeling of the panel

(ii) derive reliable approximate expressions for the statistics of the panel

response to the random acoustic loading

(iii) formulate a prediction strategy of the accumulated damage in terms of the

obtained statistics of the response

All three problems were successfully addressed. First, a large displacement - small strains
structural dynamic model of the composite panel was accomplished by relying on the von
Karman strain expressions. Further, the formulation naturally accounts for uniform
temperature effects as well as the presence of in-plane and transverse temperature
gradients. Finally, a higher-order displacement field was adopted to accurately capture
the shear effects. Consistently with the proof of concept aspect of this Phase I effort, a
simplified, one-mode approximation of the response was derived for a simply supported
panel. Non-dimensionalization of the resulting equation of motion revealed that the
response of different types of panels should exhibit similar characteristics and a
prototypical panel was considered. The analysis of its response revealed in particular that
the panel response is fairly narrowband at low sound pressure levels when the panel
vibrates around its buckled states. However, as the excitation level is increased, the
nonlinear effects increase as well resulting in the appearance of a subharmonic (of order
1/2) component of the response. Finally, at very high sound pressure levels, the power
spectral density of the panel response exhibits a single broad peak. The nonlinearity of
the displacement-stress was emphasized and a “bottoming out” effect in the stresses was
observed.

The determination of reliable approximations of the statistics of the panel
response to the random acoustic excitation was accomplished by relying on two separate
equivalent linearization strategies. The first of these two methods seeks to approximate at
best the panel response by a Gaussian process of unknown mean and variance. At low
SPL, nonzero means are indeed found that correspond to the fluctuations around the
buckled states. Above a critical SPL, however, this approach only yields a zero mean
approximation of the “continuous” snap-through of the panel. The second equivalent
linearization method relies on a mean equal to the buckled states and a representation of
the panel response is obtained as the sum of zero mean fluctuations around these
positions. A reliable approximation of the variance of the response was obtained, at low
SPL, by the first of these approaches alone but, at high SPL, a reliable estimate of this
quantity is only obtained by averaging the predictions of the two equivalent linearization
strategies. Even though accurate approximations of this moment were obtained, it was
shown that the exact probability density function of the panel response can accurately be
matched by sums of Gaussian distributions only at low SPL.

The prediction of the accumulated damage in the panel was achieved by a
combination of three methods: a “standard” Rayleigh approximation, a more detailed
formulation taking into account the nonlinearity of the displacement-stress relation, and
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finally a phenomenological modeling of the fluctuations around the buckled states and
the snap-through process. When the snap-throughs occur only exceptionally, the
nonlinear displacement-stress formulation yields an excellent approximation of the exact
damage as estimated by an extensive simulation/rainflow analysis. However, as the sound
pressure level is increased and snap-throughs start occurring, this approach
underestimates the damage and the phenomenological formulation ought to be used.
When the SPL is high enough, i.e. above the threshold at which the equivalent
linearization strategy #1 fails to yield nonzero means, the average of the damages
predicted by the Rayleigh and the nonlinear displacement-stress formulations was shown
to be quite accurate over a broad range of sound pressure levels and S-N curve exponents.

The combination of these three different research efforts provides a solid
foundation for the prediction of the fatigue life of composite and isotropic panels of
various shapes, support conditions and in a wide array of extreme environments.
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